The convergence of Software-Defined Networking (SDN) and Internet of Vehicular (IoV) integrated with Fog Computing (FC), known as Software Defined Vehicular based FC (SDV-F), has recently been established to take advantage of both paradigms and efficiently control the wireless networks. SDV-F tackles numerous problems, such as scalability, load-balancing, energy consumption, and security. It lags, however, in providing a promising approach to enable ultra-reliable and delay-sensitive applications with high vehicle mobility over SDV-F. We propose ARTNet, an AI-based Vehicle-to-Everything (V2X) framework for resource distribution and optimized communication using the SDV-F architecture. ARTNet offers ultra-reliable and low-latency communications, particularly in highly dynamic environments, which is still a challenge in IoV. ARTNet is composed of intelligent agents/controllers, to make decisions intelligently about (i) maximizing resource utilization at the fog layer, and (ii) minimizing the average end-to-end delay of time-critical IoV applications. Moreover, ARTNet is designed to assign a task to fog nodes based on their states. Our experimental results show that considering a dynamic IoV environment, ARTNet can efficiently distribute the fog layer tasks while minimizing the delay.
The Internet-of-Things (IoT) devices, backed by resourceful fog computing, are capable of meeting the requirements of computationally-intensive tasks. However, many existing IoT applications are unable to perform well, due to different Quality-of-Service (QoS) requirements, while communicating with the fog server. Besides, constantly changing traffic demands of applications is another challenge. For example, the demand for real-time applications includes communicating over a path that is less prone to delay, and applications that offload computationally intensive tasks to the fog server need a reliable path that has a lower probability of link failure. This results in a tradeoff between conflicting objectives that are constantly evolving, i.e., minimizing end-to-end delay and maximizing the reliability of paths between IoT devices and the fog server. We propose a novel approach that takes advantage of machine learning (ML) and multiobjective optimization (MOO)-based techniques. The reliability of links is evaluated using an ML-based algorithm in an software-defined network (SDN)-enabled multihop scenario for the IoT-fog environment. By considering the two conflicting objectives, the MOO algorithm is used to find the Pareto-optimal paths. Our experimental evaluation considers two applications with different QoS requirements-a real-time application (App-1) using UDP sockets and a task offloading application (App-2) using TCP sockets. Our results show that: 1) the tradeoff between the two objectives can be optimized and 2) the SDN controller was able to make adaptive decision on-the-fly to choose the best path from the Pareto-optimal set. The App-1 communicating over the selected path finished its execution in 13% less time than communicating over the shortest path. The App-2 had 41% less packet loss using the selected path compared to using the shortest path.